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ABSTRACT

System identification is an important area in procsmstrol and statistics.ldentification of
transfer function parameters provides significant benefits for research and in the design of
closedloop control systems.Despite over six decades of research and applications of system
identification, only a hadiful of methods are currently available. Most current methods are
somewhat complex and their results often uncertain or inconclugiee processing industrial

data superimposed with noise and complex unmeasured disturbartaespaper illustratethe
successfulidentification of transferfunction parameterfor multi-input/output systems amidst
disturbance, noise with ultshort durabn data. This new methodtan easily be usenh the

control room environmentacademic colleges and for research.
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1. Evolution of System Identification

Since the miell950s, only a handful of system identification algorithms have beemted
and put to practical use. The most widetypwn include Box and Jenkitig, 2), ARMAX (auto
regressive moving averagaodels with exogenous input$3, 4) and stepresponse vector
coefficient modelg5). These methods require extensive skill and training in order to use them
correctlyfor the design of control systems. Industrial dataftensyperimposed with random
noise,complex unmeasured disturban@sl nonlinearities. These menaces médasystem
identification process more challenging and result in potentially uncertain or inaccurate results.
In other cases, the need for intrusive tests, longer duration tests and tests calling for bigger than
possible bumps in the process make the systentifidation process difficult, delayed or even
impossible. Some of the existing methods work on SISO (skigpat/singleoutput) (6)
processes only. Other MIMO (multipieput/multipleoutput) (6) methods are rather complex
and require extensive traigntime and experience in order to work correctBeveraldecades
after the original invention of the Box and Jenkins system identification method, and despite the
knowledge of other system identification methods, a very small number of control engiméers
other personnel currently use system identification tools on a regular Fasagdemic schools
and colleges typically do not cover system identification in undergraduate level courses as this is
perceived to be an advanced, graduatesll topic. A najority of the time inside industrial

control rooms PID tuning parameters, feedforward parameters and manyr@@d control



parameters are purely guessed or estimated using tHasbidnedtrial-anderror methods
Furthermore there isan excessivefocus on academic topics like Laplace transfoli@sand
frequency domain analysi@). Practical tools and methods catering to the control room
environmenfare not available easily and even if they are available, they are complex, expensive,

bulky, andoften produceincertain results.

2. SLIC-ID (Step-Less Closedloop) Identification

Abrandn ew met h oSHIGID &§StepLess Cldsed.oop) Identificatio aims at both
SISO and small to medium scale MIMO problems. P&iforms calculationsiternally in the
Laplace (S) and the discrete (Z) domg@sbut all usetinterface is presented in the more easy
to-understand time domairDSI works remarkably well even with very shddta sets (typically
onehalf to oneterth of the data set required by other known methoB$§I does not need open
loop step tests in manual mode; it can process complete dtagediata without steps on the
setpoint in auto modeDSI can use datam complete cascade mode, with setpoint gegmmade
from a multivariable supervisory advanced control scheménother strengtlof DSI isin its
relatively low sensitivityto large levels of random noise (white noise) in the system. While
other techniqguesan generate errors and uncertainbesdata superimposed witkignificant
unmeasured disturbances and drifts, DSI is able to isolate both the noise and distubdnces

produce accurate system identification results.

3. Characterization of Dynamic Systems
System identification can be defined astetmining the dynamic relationship between a

controlled variable and a manipulated variable. A controlled variable (abbreviated as CV) is the



variable that must be controlled at some target, often called the setpoint. The manipulated
variable (abbreviad as MV) is the variable that is manipulated (adjusted) in order to move the
CV near its target.The CV is the dependent variable and the MV is the independent variable.

The relationship between a MV and CV can be characterized aisiagsfer function.

See Figl.
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Fig. 1 Inputand Output Signals in a Transfer Function

3.1Industrial Transfer Functions

In most realife industrial processes, the time factor is involved. In other words, if an
independent variable is stepped (bump#®),dependent variable does not instantaneously reach
a new value, but takes a finite amount of time to start changing and then eventually reach a new
steady state. This relationship between an independent variable and the dependent variable can
be charaterized using a trafex function, as shown in Fig2. Almost all reallife transfer
functions can be characterized by four types of transfer functions as sh&n & Transfer
functionsshown in Fig.3ato 3d are very common in any manufacturipgpcess. Te ransfer
function shown in Fig.3eis commonly encountered on ekermic chemical process reactipns
particularly thosefor manufacturing polymers. Almost 9598% of all industrial process

dynamics can be defined using these five types afgaotransfer functiorshown in Fig.3ato



3e. Fig. 4 shows less commadypes ofindustrial transferfunctions. Fig4a shows aelatively
small initial inverse responsd-ig. 4b showsa significant inverse respse followed by complex
dynamics. Fig. 4c showsrather rare and abnormally complex dynamics that are better off
characterized using step response coefficient dynamic m{@eisstead of transfer function
models
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Fig. 2. First Order Transfer Function with Dead Time

Based on analysis afdustrial processes, it is known thaettransfer functions shown in

Fig. 3 (ae) and 4a account for about 98% of all industrial process dynamics.

Modern plants are often very highly interactive because of heat balance and mass balance
integration whichmaximizes thermodynamic efficiencies. Modern industrial processes are often

run close to constraint limits and shutdown limits for maximizing production rates and operating



efficiencies. These modern operating modes often make traditional step tekts getpoints or

outputs of manipulated variables) required for system identification difficult.
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Fig. 3. Various types of typical industrial transfer functions

Application of current system identification methods like B@xkins, ARMAX and step
respnse coefficient models used by research and academic professionals has been somewhat too
complex and cumbersome for the industrial control room environme@tdy a very small
number of contratoom personnel in manufacturing plants either have skitfee or access to
simple and robust system identification tools and technologgnowledge of system
identification is very useful in the design of control system in manufacturing processes and in
statistical research. Simpler technology and less congoéware product aimed at reading
process data from a DCS, PLC or a computer and identifying transfer functions would be very
valuable in the current modern control room environment. This could also improve the quality
and practicality of the process cmitsemester education at the graduate, ugdeduate and

communitycollege level.
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Fig. 4 Additional varieties ofndustrial transfer functions

3.2Uniqueness and Power o6LIC-ID Algorithm

This papeillustrates the results fromaandnew invention of an algorithm that can identify
transfer function dynamics far more quickly and easily compared to current methods. The new
al gor it hShlC-iDa3tep-ldess Blosed-Loop) Identificatiord h a s  wing &uncfioonsl | o

and capabilities:

1 Can be used omultiple-input and multipleoutput systems (not restricted to singiput
and singleoutput)

1 Requires much shorter duration data (abmghalf to onetenth) compared to current
methods

1 Can use closelbop, operloop data or a mixture of both. Closkdp dataare data with
the control loop in closetbop (automatic or cascade) mode. Unlike existing

technologies, the closddop data need not contain clean steps on the setpoint of the



controller(s) but, could be ramping or any complex cldseg@ sepoint trajectory
imposed by the existing supervisory advanced control system.

1 Can identify process dead time (dead time does not need to be specified by the user).

1 Relatively less ansitive to fast/high frequency noise or random nasempared to
current nethods

1 Possessédbe capability of isolating and determining unmeasured disturbances and drifts

1 Data does not need to be stationary

91 Data preconditioning and prgrocessing as required by other methods are not required.

1 Though internal calculations usige Laplace (s) domain and tbescrete (z) domaimall
userinterface is presented in the simpler time domaifihe simplicity makes the
approach usable by tedhians and engineers alikdt canbe also used in undergraduate
semester to teach systedentification as a newnajortopic.

1 The process of learning and using the algorithm and applying to comdrol industrial
problems or in claseoom semesterrpjects takes just a few hourseven for a new

student, technician or a novice process contrgireser.

The new algorithm was tested and proven using both known transfer functions based on

simulations and also based on real industrial process data.

3.3Practical lllustration

Fig. 5 showsa triple cascade PID control schenmed todemonstrate th&lentification of
closedloop transfer functions using tH&LIC-ID method. The cascade PID is an AC (online

analyzer controller). The slave PID is a TC (temperature controller). The slave PID TC



dynamics include a FC (flow contrellr ) .

The s |
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transfer

setpoint and the | a temgemature PV signal. The cascade PID is active (in automatic mode).

The slave PID is also active (in cascade modépst current closetbop system identification

researcldefines closedoop identification as identification of dynamics amidst step changes on

the setpoint of a controller in automatic (active) mode. The controller could be a PID, MPC

(model predictive controller), fuzzy logiend rulebased or any other dedloop controllers.

The system could be singleput/singleoutput (SISO), multiplenput/singleoutput (MISO) or

multiple-input/multipleoutput (MIMO).
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Transfer Delay (minutes) | Process Gain Time Constant
Function (minutes)
Process 8.0 6.5 25.0
Disturbance 0.0 -1.0 15.0

Table I Knownvalues of transfer function parameters used in the illustrations

One of the notable achievements of 8i1dC-ID methodis that it does not require any step
changes on the setpoint in automatic mode. Fig. 5, the system identification envelope

comprises of four inputs

1 The firstinputis the signal labeled1V1 in Fig.5, t he sl ave Pl DG6s OP.
absolutely no step changes as this is thefrof the slave PID in cascadeode. The
cascade PIDnautomodé s mani pul ating the sl ave Pl DOG6s

cascade PIDb6s controller tuning parameters
does not possess any step changes affakk MV1 signal feeds the slave PID controller
| o s fpadsfer function.

1 The secondhput is the signal labeled DM&hich comprises of a superimposed pulse and
ramp signal that feeds a disturbance transfer function.

1 The third input labeled DVas a purely random signal (random noise) which, in varying
degees is very common in most process signals.

1 The fourth inputlabeled DV3comprises of a disturbance signal comprising of both fast

disturbances and slow drift superimposed to look similar to disturbances encountered in

many manufacturing processes.
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The ouputs from these four transfer functions are then added to generatentipssite
signal labeled CV in Fig5. The known transfer function parameters for the slave transfer
function and tke disturbance transfer function used in the process control schemesiown in

Tablel.

3.4ClosedLoop System Identification with Two Inputs

Fig. 6 shows the successful transfer function identification of a clusmu data set. The
cascade and slave[Plare both active (cascade PID is in auto mode and the slBvés n
cascade mode). Thmeasured disturbanc®Y1) signaland the high frequency random noise
signal (DV2)asshown in Fig5 are bothactivebut the unmeasured disturbance sigfia¥3) is
not present{DV3 signal in this case is zero)The CV (outpu) signal shown inFig. 6 (the
jagged/spiky trend linejs the CV signalmarkedin Fig. 5. The second trend line in the top
window inFig. 6 (the norspiky trend line) is the transfer function model prediction based on the
identified transfer functionbased orthe SLIC-ID algorithm The transfer function parameters
identified by theSLIC-ID algoiithm are shown in dblell. Notice the close match between the
true (actual) transfer function parametsi®wn inFig. 5 and the identified parameters shown in

Fig. 6.
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Fig. 6- Closedloop transfer function identification with two inputs

Transfer Delay (minutes) | Process Gain Time Constant
Function (minutes)
Process 8.47 6.73 25.0
Disturbance 0.63 -1.04 16.8

Table II. Transfer Functions Identified by DSI Algorithm with Two Measured Inputs

3.5ClosedLoop System Identification with Two Inputs and Unmeasured Disturbance

Fig. 7 shows the successful determination of transfer function parametersraéscldsed
loop case. Inthis case, the slave and cascade PID are both active. The MV1 moves in closed
loop mode (manipulated by the slave PID) in order to maintain the CV at its set/ifit.
(measured disturbance) and DV2 (fast random noise) are both active. DV3 is alscaadti
impacts the CV. DV3 is deliberately treated as an unknown disturbance in order to challenge the

capability of theSLIC-ID algorithm. DV3 impacts the CV and forces a mismatch in the transfer
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function model prediction Notice the significant deviation in the CV (output) and the Transfer
Function Model trends (top trend plot in Fig. 7). Despite this significant deliberate injection of
the unmeasured disturbance signal (DV3), the transfer function parameters identified by the
SLIC-ID algorithm as shown in dblelll, closely match the true transfer function parameters
shown inTable | This illustrates the ability of th&LIC-ID algorithm to identify transfer
functions using shoduration closedoop data with multiple inputs and with both measured and

unmeasured disturbances.
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Fig. 7- Closedloop transfer function identification with two inputs and amidst strong
unmeasured disturbances

Transfer Delay (minutes) | Process Gain Time Constant
Function (minutes)
Process 8.41 6.45 21.2

Disturbance 0.1 -1.11 18.6




Table 1ll. Transfer Functions Identifidy DSI Algorithm with Two Measured
Inputsand Unmeasured Disturbances
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Fig. 8 Closedloop transfer function identificattowith multiple measured inputs

Transfer Delay (minutes) | Process Gain Time Constant
Function (minutes)
Process 8.19 6.74 25.2
Disturbance 0.0 -1.04 17.0

Table IV. Transfer Functions ldentified by DSI Algorithm with Multiple Measured

Inputs
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3.6 ClosedLoop System Identification with Multiple Measured Inputs

As a final illustration,Fig. 8 shows the closeldop determination of transfer function
parameters for both the slave and disturbance transfer function parameters by including DV3 as a
measued input in addition to all other inputs also as measured inputs (MV1, DV1 and DV2).
Now, since DV3 is also a measured input, the match between the CV (output) and the Transfer
Function Modelare excellent (the CV trend and the transfer function model trends are very

nicely superimposed with very little residual error).

The above cases of system identification were performed using -ttagediata generated
from a simulation with known transféanction parameterand known disturbancesThe close
match between the identified transfer function parameters and those used to simulate the closed
loop data proves the success of #éC-ID algorithm. TheSLIC-ID algorithmhas been applied
to many closedoop data sets from several industrial and manufacturing processes in chemical,
petrochemical, oitefining, gas, electripower, solar, metallurgical and related industries. Two
more case studies showing the susfidsapplication of theSLIC-ID algorithm using closed

loop data are described below.

3.7ClosedLoop System Identification with Discontinuity

Fig. 9 shows @emperature controllgfTC) in automatic mode.The MV1 (Input 1) trend in
the bottom window is the output from the TC. The CV (output) trend in the top window is the
process value (PV) of the TC. The controller setpoint is bumped automatically by the sequence.

The data is completely closénbp and there are discontinuities hretdata set caused by time
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periods when the TC is in manual and offline. The discontinuities can pose serious challenges to
other currently practiced system identification methods, if the data set is not sliced or pre
conditioned. The discontinuities dot affect theSLIC-ID algorithm In fact the discontinuities

and nonlinearities (if any) are identified and isolated by 81dC-ID algorithm while

determining the trugransferfunction process dynamics.

The idenified transfer function parameters using this completely ckbsepd data are shown in

Table V.

Transfer
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My =

(Inputl)

-

Fig. 9 Closedloop transfer function identification on a real industrial temperature controller (TC)

Transfer Delay (minutes) | Process Gain Time Constant
Function (minutes)
Process 1.26 1.63 27.6

Table V. Transfer Function Identified by DSlgorithm with ClosedLoop Data

with No Step Tests
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3.8 Multi -Input Closed-Loop System Identification with Disturbances and No Step Tests

Fig. 10 shows a thremput system identification case using completely cldseg data. A
commercial MPC (modegbredicive controller) was making simultaneous closeop setpoint
changes on all three MVs (MV1, MV2 and MV3 shownrFig. 10). There are no step changes
on the setpoints and all setpoint changes made by the MPC are completeadpse8econd
ordertransfer function parameters have been identified USIig-1D algorithmand are shown
in Table VI What is notable about this case is that the total width of the data set used for the
closedloop system identification is only about four tismthe firstorder time constant of the
process dynamics. ugh ultrashort duration data areadequate for obtaining successful results

from existing system identification methods.
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Fig. 10 Complex multiinput simultaneous closddop transfer functioidentification with
ultra-short duration data and with no step tests
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Delay Process Gain | Time Time
(minutes) Constant#1 | Constant #2
(minutes) (minutes)
Transfer 0.3 -0.061 94.4 40.9
Function #1
Transfer 7.1 0.299 54.1 48.4
Function #2
Transfer 11.5 2.44 628.9 39.7
Function #3

Table V1 Simultaneous Closedoop Transfer Function Identification by DSI
Algorithm using UltraShort Duration Data with No Step Tests,
Significant Disturbances
Many process dynamias the real world exhibit various levels of nonlinearit@®). A
nonlinear transfer function is one whose parameters vary astofuiof operating conditions.

Nonlinearities pose challenging problems to existing system identification technolagieseh

unable to work with shomuration data sets.

4. Industrial Control System Design and Applications

The ability to identify multivariable transfer functions using clekesp data can be used in
many industrial applications.This capability can helpo design and implement closéxbp
control schemes residing wholly in DCS or PLC systefdew of these applications are listed

below:

91 PID tuning optimization

1 Design of DCS, PLC or SCADAased APC (advanced process control) systems,
including cascades, feedforwards, modelsed control, override constraint contaoid
rule-based control.

1 Improving model accuracy and control quality in MPC systems.
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1 Troubleshooting, debugging and maintenance of control schemes.

1 Design and implementation aflaptive control, sequence control and inferential control
strategies.

1 Converting complex nonlinear control schemes into simpler and more robust sequential

control schemes.

5. Summary

This paper illustrates the application of a brawdv, novel method of syem identification
called SLIC-ID algorithm It is capable of processing completely closedp data without any
step tests on the setpoints. lllustratiansluded bothdata generated from simulatiowith
known transfer functionsand alsoreal industrial process data from D&£S A notable
distinguishing achievement of this neawethod is the ability to identify dynamics using wtra
short duration dat#®hseets&. in Thlee teomt efixutl t of
identification meanglatasets that are around chalf to onetenth of the length of data sets
required in current technologies. The ability to successfully work with closgdutra-short
data sets allows this nemethod to isolate nonlinearities in different operatingeso This
capability in turn can be used to determine pwts®e nonlinear transfer functions which can
then be used to implement robust adaptive ckdsep modelbased control schemes inside
DCS, PLCs and SCADA systems, something that is not commomlg dorrently. The new
algorithm can be applied to SISO, MISO and MIMO systems. The algorithm works remarkably
well even in the presence of superimposed high frequency noise, medium frequency drifts and

slow noise. The algorithm is capable of extractimgtrue process dynamics while isolating the
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residuals. This new method does not require datapnqoeessing, data slicing, data
normalization and any of the other various data-poEessing steps required by existing
technologies.  This algorithm is pected to makeapplications of APC in industrial
manufacturing processes inside a DCS/PLC or SCADA systems far easier, faster and less
expensive. It is also expected to simplify the system identification methodology and make it
practical and reachable tngineers, technicians and undergraduate semester courses in both

four-year and community colleges.

REFERENCE

1. A. Pankratz.Forecasting with Univariate BoxJenkinsModels:Concepts and Cases.
Wiley Series in Probability and Mathematical Statistitshin Wiley and S Inc. ISBN
0-471-090239, 1983

2. V. A. Mabert. An introduction to short term forecasting using the Bexkins
methodologylssie 2 of PP & C monograph serieBmerican Institute of Industrial
Engineers Produatin Planning and ContrdDivision, 1975.

3. S. L.Kothar, Y. Lu and]. A. MandlerConstrained system identification for
incorporation of a priori knowledgdJS Patent Publication number: US 2004/0181498
Al, 2004.

4. H. F. ChenNew Approach to Recursive ldentification for ARMAX $gms Automatic
Control, IEEE TransactionXey Lab. of Syst. & ControChinese Acad. of Sci., Beijing,
China Volume: 55, Issue; 2010.

5. B. W. Bequette.Process Control: Mieling, Design, and SimulatiorRrentice Hall
International Series in thBhysical and Chemical Engineering Sciend88N-13:978
0133536409, 2003.

6. H.P.Huang, FY. Lin and JC. Jeng, Dept. of Chemical Engineering, National Taiwan
University, Taipei, TaiwanController Design for Integrating Processes in SISO and
MIMO Systems|nternational Federation of Automatic Contr@003

7. R. E.Bellman and R. S. Roth. The Laplace Transform: Series in Modern Applied
Mathematicg Vol. 3, World Scientific Publishing Céte. Ltd, ISBN 9971966735,
1984.

8. Y. P. Tian. FrequencyDomain Analysis and Desigrf Distributed Control
Systems. ISBN-13:9780470828205.John Wiley and Sons, Singapore Pte. [2012.

9. R. Priemer.Introductay signal processingWorld Scienfic Publishing Co. Pte. Ltd.
ISBN 997150-9199, 1991.



21

10.R. D. Berber and C. Kravaris\onlinear model based process conti@toceedings of
the NATO Advanced Study Institute on Nonlinear Model Based Process Co9@ol



